Admiralty Brass !!LINK!!
Admiralty brass is composed of zinc, copper and tin. Copper provides the increased heat transfer which zinc provides the corrosion resistance. In applications such as condensers and heat exchangers cooled with fresh, salt, or brackish water, these tubes are very useful. You will find them in oil refineries, power plants, and other industrial applications.
admiralty brass
Pump Barrels or Sucker Rod Pumps, used in oil drilling also use admiralty brass due to its corrosion resistance. Even though the pumps typically last between 6 months and 1 year, admiralty brass is a preferred material for improved longevity over carbon steel and below the price of materials such as monel 400.
One of the most commonly used heat exchange alloys, its usage goes back for over 70 years. Successfully built and maintained C44300 admiralty brass heat exchangers and power plant condensers have been in service for over fifty years. Ameritube has been manufacturing, distributing, testing, and supplying this alloy for over 12 years.
Combining copper, zinc and tin, C44300 admiralty brass is a low-cost alloy with good heat transfer and high corrosion resistance. Ameritube has to be your choice in admiralty brass both for heat transfer and pump barrel applications. Let us put our deep experience in manufacturing this alloy into your next application.
Brass is similar to bronze, another copper alloy that uses tin instead of zinc.[2] Both bronze and brass may include small proportions of a range of other elements including arsenic (As), lead (Pb), phosphorus (P), aluminium (Al), manganese (Mn), and silicon (Si). Historically, the distinction between the two alloys has been less consistent and clear,[3] and increasingly museums use the more general term "copper alloy."[4]
Brass is still commonly used in applications where corrosion resistance and low friction are required, such as locks, hinges, gears, bearings, ammunition casings, zippers, plumbing, hose couplings, valves, and electrical plugs and sockets. It is used extensively for musical instruments such as horns and bells. The composition of brass, generally 66% copper and 34% zinc, makes it a favorable substitute for copper in costume jewelry and fashion jewelry, as it exhibits greater resistance to corrosion. Brass is not as hard as bronze, and so is not suitable for most weapons and tools nor marine uses, because the zinc reacts with minerals in salt water, leaving porous copper behind; Marine brass, with added tin, avoids this, as does bronze.
Brass is more malleable than bronze or zinc. The relatively low melting point of brass (900 to 940 C, 1,650 to 1,720 F, depending on composition) and its flow characteristics make it a relatively easy material to cast. By varying the proportions of copper and zinc, the properties of the brass can be changed, allowing hard and soft brasses. The density of brass is 8.4 to 8.73 g/cm3 (0.303 to 0.315 lb/cu in).[6]
Today, almost 90% of all brass alloys are recycled.[7] Because brass is not ferromagnetic, ferrous scrap can be separated from it by passing the scrap near a powerful magnet. Brass scrap is melted and recast into billets that are extruded into the desired form and size. The general softness of brass means that it can often be machined without the use of cutting fluid, though there are exceptions to this.[8]
Aluminium makes brass stronger and more corrosion-resistant. Aluminium also causes a highly beneficial hard layer of aluminium oxide (Al2O3) to be formed on the surface that is thin, transparent, and self-healing. Tin has a similar effect and finds its use especially in seawater applications (naval brasses). Combinations of iron, aluminium, silicon, and manganese make brass wear- and tear-resistant.[9] The addition of as little as 1% iron to a brass alloy will result in an alloy with a noticeable magnetic attraction.[10]
Brass will corrode in the presence of moisture, chlorides, acetates, ammonia, and certain acids. This often happens when the copper reacts with sulfur to form a brown and eventually black surface layer of copper sulfide which, if regularly exposed to slightly acidic water such as urban rainwater, can then oxidize in air to form a patina of green-blue copper carbonate. Depending on how the patina layer was formed, it may protect the underlying brass from further damage.[11]
Although copper and zinc have a large difference in electrical potential, the resulting brass alloy does not experience internalized galvanic corrosion because of the absence of a corrosive environment within the mixture. However, if brass is placed in contact with a more noble metal such as silver or gold in such an environment, the brass will corrode galvanically; conversely, if brass is in contact with a less-noble metal such as zinc or iron, the less noble metal will corrode and the brass will be protected.
To enhance the machinability of brass, lead is often added in concentrations of about 2%. Since lead has a lower melting point than the other constituents of the brass, it tends to migrate towards the grain boundaries in the form of globules as it cools from casting. The pattern the globules form on the surface of the brass increases the available lead surface area which, in turn, affects the degree of leaching. In addition, cutting operations can smear the lead globules over the surface. These effects can lead to significant lead leaching from brasses of comparatively low lead content.[12]
In October 1999, the California State Attorney General sued 13 key manufacturers and distributors over lead content. In laboratory tests, state researchers found the average brass key, new or old, exceeded the California Proposition 65 limits by an average factor of 19, assuming handling twice a day.[13] In April 2001 manufacturers agreed to reduce lead content to 1.5%, or face a requirement to warn consumers about lead content. Keys plated with other metals are not affected by the settlement, and may continue to use brass alloys with a higher percentage of lead content.[14][15]
Also in California, lead-free materials must be used for "each component that comes into contact with the wetted surface of pipes and pipe fittings, plumbing fittings and fixtures". On 1 January 2010, the maximum amount of lead in "lead-free brass" in California was reduced from 4% to 0.25% lead.[16][17]
Dezincification-resistant (DZR or DR) brasses, sometimes referred to as CR (corrosion resistant) brasses, are used where there is a large corrosion risk and where normal brasses do not meet the requirements. Applications with high water temperatures, chlorides present or deviating water qualities (soft water) play a role. DZR-brass is excellent in water boiler systems. This brass alloy must be produced with great care, with special attention placed on a balanced composition and proper production temperatures and parameters to avoid long-term failures.[18][19]
Another such material is gunmetal, from the family of red brasses. Gunmetal alloys contain roughly 88% copper, 8-10% tin, and 2-4% zinc. Lead can be added for ease of machining or for bearing alloys.[22]
The high malleability and workability, relatively good resistance to corrosion, and traditionally attributed acoustic properties of brass, have made it the usual metal of choice for construction of musical instruments whose acoustic resonators consist of long, relatively narrow tubing, often folded or coiled for compactness; silver and its alloys, and even gold, have been used for the same reasons, but brass is the most economical choice. Collectively known as brass instruments, these include the trombone, tuba, trumpet, cornet, flugelhorn, baritone horn, euphonium, tenor horn, and French horn, and many other "horns", many in variously-sized families, such as the saxhorns.
Other wind instruments may be constructed of brass or other metals, and indeed most modern student-model flutes and piccolos are made of some variety of brass, usually a cupronickel alloy similar to nickel silver (also known as German silver). Clarinets, especially low clarinets such as the contrabass and subcontrabass, are sometimes made of metal because of limited supplies of the dense, fine-grained tropical hardwoods traditionally preferred for smaller woodwinds. For the same reason, some low clarinets, bassoons and contrabassoons feature a hybrid construction, with long, straight sections of wood, and curved joints, neck, and/or bell of metal. The use of metal also avoids the risks of exposing wooden instruments to changes in temperature or humidity, which can cause sudden cracking. Even though the saxophones and sarrusophones are classified as woodwind instruments, they are normally made of brass for similar reasons, and because their wide, conical bores and thin-walled bodies are more easily and efficiently made by forming sheet metal than by machining wood.
Next to the brass instruments, the most notable use of brass in music is in various percussion instruments, most notably cymbals, gongs, and orchestral (tubular) bells (large "church" bells are normally made of bronze). Small handbells and "jingle bells" are also commonly made of brass.
The harmonica is a free reed aerophone, also often made from brass. In organ pipes of the reed family, brass strips (called tongues) are used as the reeds, which beat against the shallot (or beat "through" the shallot in the case of a "free" reed). Although not part of the brass section, snare drums are also sometimes made of brass. Some parts on electric guitars are also made from brass, especially inertia blocks on tremolo systems for its tonal properties, and for string nuts and saddles for both tonal properties and its low friction.[25]
The bactericidal properties of brass have been observed for centuries, particularly in marine environments where it prevents biofouling. Depending upon the type and concentration of pathogens and the medium they are in, brass kills these microorganisms within a few minutes to hours of contact.[26][27][28]
Brass is susceptible to stress corrosion cracking,[35] especially from ammonia or substances containing or releasing ammonia. The problem is sometimes known as season cracking after it was first discovered in brass cartridges used for rifle ammunition during the 1920s in the British Indian Army. The problem was caused by high residual stresses from cold forming of the cases during manufacture, together with chemical attack from traces of ammonia in the atmosphere. The cartridges were stored in stables and the ammonia concentration rose during the hot summer months, thus initiating brittle cracks. The problem was resolved by annealing the cases, and storing the cartridges elsewhere. 041b061a72